Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
JCI Insight ; 8(8)2023 04 24.
Artigo em Inglês | MEDLINE | ID: mdl-36853828

RESUMO

The need for advances in the management/treatment options for ischemic stroke patients requires that upcoming preclinical research uses animals with more human-like brain characteristics. The porcine brain is considered appropriate, although the presence of the rete mirabile (RM) prevents direct catheterization of the intracranial arteries to produce focal cerebral ischemia. To develop a reproducible minimally invasive porcine stroke model, a guide catheter and guide wire were introduced through the femoral artery until reaching the left RM. Using the pressure cooker technique, Squid-12 embolization material was deposited to fill, overflow, and occlude the left RM, the left internal carotid artery, and left circle of Willis wing up to the origins of the middle cerebral arteries (MCAs), mimicking the occlusion produced in the filament model in rodents. Longitudinal multimodal cerebral MRI was conducted to assess the brain damage and cerebral blood supply. The technique we describe here occluded up to the origins of the MCAs in 7 of 8 swine, inducing early damage 90 minutes after occlusion that later evolved to a large cerebral infarction and producing no mortality during the intervention. This minimally invasive ischemic stroke model in swine produced reproducible infarcts and shows translational features common to human stroke.


Assuntos
Isquemia Encefálica , AVC Isquêmico , Acidente Vascular Cerebral , Humanos , Animais , Suínos , Isquemia Encefálica/diagnóstico por imagem , Acidente Vascular Cerebral/diagnóstico por imagem , Encéfalo/diagnóstico por imagem , Artérias
2.
Front Syst Neurosci ; 14: 488652, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-33117135

RESUMO

Magnetic resonance imaging (MRI) biomarkers require complex processing routines that are time-consuming and labor-intensive for clinical users. The Single Subject Brain Analysis Toolbox (SeSBAT) is a fully automated MATLAB toolbox with a graphical user interface (GUI) that offers standardized and optimized protocols for the pre-processing and analysis of anatomical MRI data at the single-subject level. In this study, the two-fold strategy provided by SeSBAT is illustrated through its application on a cohort of 42 patients with Huntington's disease (HD), in pre-manifest and early manifest stages, as a suitable model of neurodegenerative processes. On the one hand, hypothesis-driven analysis can be used to extract biomarkers of neurodegeneration in specific brain regions of interest (ROI-based analysis). On the other hand, an exploratory voxel-based morphometry (VBM) approach can detect volume changes due to neurodegeneration throughout the whole brain (whole-brain analysis). That illustration reveals the potential of SeSBAT in providing potential prognostic biomarkers in neurodegenerative processes in clinics, which could be critical to overcoming the limitations of current qualitative evaluation strategies, and thus improve the diagnosis and monitoring of neurodegenerative disorders. Furthermore, the importance of the availability of tools for characterization at the single-subject level has been emphasized, as there is high interindividual variability in the pattern of neurodegeneration. Thus, tools like SeSBAT could pave the way towards more effective and personalized medicine.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...